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1. Introduction

Building a perpetuum mobile is an old dream of mankind. This idea is strongly interwoven with

the personal projections and imaginations we have about the world. This makes it difficult

sometimes to discuss the theme reasonably. However,  we believe that the all present energy

crisis today with its all negative ecological and political consequences will enforce a constructive

discussion of this theme for the future and we will do our contribution here.

The oldest proposal of a perpetuum mobiles stems from India and can be dated back to the 5th

century A.C. [1]. A famous report about a perpetuum mobile claim was published [2] by Peter

Peregrinus (about 1200 A.C.) who reported first in the medieval age about magnetism and its

applications, cf. fig.1 . From now on -due to the better availability of printed media- many claims

have been reported. A big compilation of such machine claims was done by  Dirks in the 19th

century [3].  Ord-Hume has reviewed further examples until 1977 [1].  Today the internet is the

most important medium for the discussion of this theme [4].

Scientific discussion started with the development of physics in the age of illumination. Initially

prominent scientist like Leibnitz, Bernoulli, Boyle and Gravesande discussed the theme

positively. Either they published own proposals like Boyle and Bernoulli, cf. fig.2, either they

(Leibnitz, Gravesande) gave recommendation letters for perpetuum mobile builder like Bessler

[5]. However, the climate of discussion changed with time. In mechanics the Hamiltonian energy

conservation destroyed in science any belief in mechanic perpetuum mobiles. In thermodynamics

Clausius formulated the Second law in 1850 [6] which served successfully as a working

hypothesis to predict irreversibilities. But on the other side especially this law hindered the

further discussion. Today the actual mainstream thermodynamics demands that every constitutive

material equation has to be compatible with the second law [7]. 

The typical non-working perpetuum mobiles can be classified as follows:

1) machines which are working in a potential force field. 

Especially many of the older claims fall in this category, see fig. 3. The mistake in these

constructions rely on the erroneous belief that the driving forces belong to a non-conservative

force field which is not the case here. It is clear from the mathematics of potentials that such 
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Fig.1 Peregrinus permanent magnet motor

the star is an iron rotor, the magnet is the stator

Fig.2 Boyle’s perpetuum mobile idea

tries to exploit capillarity for energy generation

systems cannot perform working cycles permanently. After the cycle is closed the energy balance

is exactly zero if any losses are neglected.

2) machines with hidden chemical or nuclear hot or cold fusion or fission processes. These sort

of “perpetuum mobiles” consume a often hidden and finite stock of energy.

The really working (perpetuum mobile-like) machine is always driven by a regenerative energy

input and works due to the presence of a non-conservative cyclic input. These non-conservative

machines can be subdivided into:

a) systems non-conservative in time: 

The working machines of this class are based on a fluctuating source of energy from the reservoir

of the environment. They often have implemented an sufficiently fast feed back  mechanism or

Fig.3: a non working perpetuum mobile
proposal by Robert Fludd from 1618

Fig.4: the permanent ringing bell  
a construction of a high ohmic high voltage
battery which let oscillate the small bowl
between the poles periodically about 40 years
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a non-linearity which allows to accumulate

energy after an energy input from the

fluctuating medium.  The efficiency of these

machines depends on the amplitude and

frequency spectrum of the medium. Typical

examples -if enumerated from big to small- are

tide power plants, mechanical clocks reloaded
Fig.5 system with a non-conservative
coupling to a conservative field

by fluctuating pressures [1] or mechanical forces, ratchet models [8], all hypotheses of so-called

Maxwell demons and zero-point energy systems [9].

b) systems non-conservative in (state)-space (and as well in time): 

To this class belong wind wheels and systems with non-conservative input which may be  based

on a non-conservative coupling or on cycles in non-conservative fields cf. fig.5 and tab.1. Other

systems of this class are gradient generating battery-like material combinations using plasmas

as “electrolyte”. These constructions are intended to maintain a (often very significantly tiny)

electrical current permanently with any significant loss of chemical energy [10]. They are non-

conservative systems in the sense of the definition given in appendix 1.

All these machines become the classical perpetuum mobile of 2nd kind if the driving ambient

medium is thermical. This classical type of perpetuum mobile changes heat energy to mechanical

energy with 100% efficiency and cools down the environment.

In this article we try to characterize these machines. We will presents in sum three systems from

non-linear dynamics and classical thermodynamics as candidates for second law violations.

Table 1: postulated or possible realizations of non-conservative force couplings

system parametrisation energy form 1 energy form 2

windmill angle n “wind” field energy mechanical energy

exotic iron moving

in magnetic field

path x

(and time t)

magnetic field

energy

mechanical energy

parametric changing

inductivity

time t magnetic field

energy

electric current

parametric changing

capacitance

time t electric field energy electric current
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2. Characterization of second law violating processes

In order to recognize systems correctly which may be of 2nd law violating character we have to

define first how these systems have to look like.

We restrict the discussion here to systems which are reproducible and come back to their initial

state after a cycle. They do not change the chemonuclear consistence of matter in the

environment after a cycle. It can be followed that these systems have to be described

mathematically by potential function or variational functionals [11]. Both mathematical tools

show exactly the necessary mathematical features in order to describe a reproducible system.

If the differentials of a potential are physically identified by work definitions then energy

conservation follows after a cycle of a reproducible system. Mayer and Joule were the first who

determined the energy equivalent between heat and mechanical energy . Their consideration and

experiments referred initially to situations showing the most simple form of (point to point)

energy conservation of equilibrium thermodynamics. In general, however, it turned out later that

the situation is more complicated because normally energy conservation can be proved only after

a cycle is closed due to the potential structure of thermodynamics caused by the reproducibility.

If then the thermodynamic processes are independent from time the description can be reduced

to a classical equilibrium thermodynamic state space potential denoted as U,H,F, or G. 

The entropy is generally defined over the heat definition

where is defined Q:=heat, T:=temperature, p:=pressure, V:=volume, µi:=chemical potential of

substance, ni:= number of moles of a particle species. The points indicate here forgotten possible

contributions like field energies for instance.

The entropy or the entropies Si (especially in the case of non-equilibrium thermodynamics if the

system cannot be fitted by only one temperature) are necessary functions which have to be

introduced mathematically in order to be able to close the reproducible cycle in the description.

Later Gibbs and Boltzmann found out that the entropy could be calculated from a probability

distribution function of the particles of the considered system. Today this result is regarded to

be valid in general and is not a conclusion furthermore but has changed to be a definition. For

it is assumed generally that the thermodynamic and the statistic interpretation are always
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equivalent despite of many different statistic forms of entropy in non-extensive-thermodynamics

and despite of the further complication by time-dependent non-linear thermodynamics. 

Therefore,  if the particle distribution of entropy can be determined experimentally,  it follows

that the temperature is always defined uniquely calorimetrically over  dQ:= T.dS  if a statistic

definition of S  like Gibbs´ definition of entropy

or another like Tsallis entropy is applied.

The Second Law according to Clausius demands that the net entropy  Š dS<0 is set free after an

isothermal cycle. Then S cannot be described completely by a thermodynamic equilibrium

function of the state space because these cycles contain irreversibilities and may be time-

dependent. 

There exist other different (but not always equivalent) formulations for the 2nd Law. For instance

the Planck-Kestin version forbids explicitely any perpetuum mobile of 2nd kind [12]. Another

practically more  applicable version is Kelvin’s “proof” or better criterion for  the impossibility

of super-Carnot efficiencies for thermodynamic machines [13]. 

The 2nd Law is an axiom which has not been proved until today. Own trials to prove it

mathematically from variation principles failed [11]. Other proofs based on thermodynamic

inequalities fail as well because a thermodynamic inequality can describe only an irreversible part

of a cyclic thermodynamic process and does not allow to give an generally valid answer to the

question about the entropy balance after a complete cycle is performed.

In order to avoid theoretical inconsistencies with the 2nd Law it was postulated by [12] that the

constitutive material equations have to be built in coincidence with the 2nd Law.  However, we

will show it later that it seems to be obvious that second law violating systems exist. Therefore,

we believe that it makes more sense to characterize state space region of materials as 2nd Law-

compatible or not compatible with respect to a thermodynamic process or cycle. This means, the

2nd Law compatibility has to be translated into material criteria as shown in [14], or in appendix1.
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3. Concrete Examples

3.1 inverted hysteresis systems        

It is widely known that the hysteresis of ferroelectric or ferromagnetic materials heats up the

electronic parts if they are excited periodically by an electric or magnetic field. Only recently it

was discovered that there exist electronic elements where the hysteresis is reversed.

Consequently, if only heat and electric work are involved in the energy balance these electronic

part should deliver electric energy and cool down the environment under “isothermal” conditions

according to the first law. In the following subsections we will present the known facts about

these systems .

3.1.a) the FET of Yusa-Sakaki     

A good example for such a possible second law violating system is the InAs-quantum dot-doted

FET invented by Yusa&Sakaki [15] and reproduced by Balocco et al.[16]. Its structure is shown

in fig.6. The FET was constructed for storing data by charging the gate capacitance.

The theoretical model of this FET stems from Rack et al.[17].  The PDE´s of the system is:

Here are ε 0 := dielectric constant of vacuum, ε :=dielectric constant of the material, ρ :=charge

density, ND:=density of donators, n3d:=charge density of electrons, nQD:=charge density of electron

trapped im quantum dots, n(z):=free electron density function specified in the article, j:=current

Fig.6: structure of an inAs-quantum dot-doted GaAs- FET
a two-dimensional electron gas (2DEG) is located in the boundary between AlGaAs and GaAs. It
represents the zero potential of the system. The voltage is applied between  Al layer and 2DEG.
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Fig.7a the experiment of Yusa-Sakaki-cf. [16]
gain hysteresis of an inAs-quantum dot- FET
electron charge density of the two-dimensional
electron gas (2DEG) vs. gate voltage; the
orientation of the cycle area indicates a gain of
electric energy

Fig.7b the theoretical calculation of the Yusa-
Sakaki-FET by Rack et al.[17]
electron charge density of the two-dimensional
electron gas (2DEG) vs. gate voltage; the
orientation of the cycle area indicates a gain of
electric energy

in the FET, and  f(nQD,n) is a specific function, which characterizes the recombination process,

cf. [17]. Figs.7 show the electron density in the 2DEG (=two-dimensional electron gas) versus

voltage. The diagram represents in effect the electric Q-U-energy plane, the sense of rotation of

the hysteresis gives the sign of the energy exchange with the environment. Remarkable is the sign

of the electric gain hysteresis of the electric cycle under isothermal conditions. Further arguments

for the gain hysteresis of this electronic part can be found in [18]. 

It has to be mentioned that an experimental test of the electric gain by a Lissajous oscillogram

is not published until today. The same holds for the cooling down effect of the electronic part

after an electric cycle which would need a caloric experiment. 

3.1.b) inverted magnetic hysteresis

The existence of gain hysteresis in dielectric structures leads automatically to the question

whether analogous systems can exist for magnetism. In deed, an inverted hysteresis loop for

magnetic layered system was discovered probably first by Gruzalski in 1977 [19].

In the meantime some more magnetic layer systems have been found by different authors [20]

which reproduce this effect. A theoretical explanations exist as well [21][22]. Of course these
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effects have not been investigated (at least not openly) under the aspect of energy generation.

Therefore, a significant caloric experiment is still missing . A further question is about the

stability of these layer systems. The lifetime of these layer systems should be high enough in

order to generate significant energy in it. Before such a metastable  thermodynamic cycling can

be regarded as successful and real, it has to be excluded that the effect is due to chemical energy

which may be set free by a change of the inner structure of the film.

Useful possible applications of inverted hysteresis may be tape wound cores used by J.L. Naudin

in his reconstruction of the MEG [4], the Ecklin flux generator [4] or Searl’s magnetic disk [18].

3.2. the thermodynamic mixture systems of Irinyi, Doczekal and Schaeffer

In 1928 Irinyi tested sucessfully the mixture benzene-water in a closed thermodynamic cycle as

power increasing working medium for steam engines of locomotives [23]. It was known already

that the pressure of benzene and water adds ideally in a mixture. Doczekal took over Irinyi’s idea

and - after intense experiments with this mixture which covered  probably as well the labile

states- he patented a motor using  the mixture benzene-water as working medium [24]. He

reconstructed an auto motor into a steam motor during the 2nd world war. The motor had a over-

Carnot efficiency and worked with a temperature difference between the boiler at 160°C and the

condensor at 80°C. This claim is in effect equivalent to the statement that the Second law can be

violated because if this is valid the proof of Kelvin [13] disproving the existence of perpetuum

mobiles can be perverted. As shown in many textbooks then a heat pump can be used to transport

the heat loss of the motor cycle back from the cold pole to the hotter pole without eating up all

Fig.8a: Irinyi’s steam motor

M motor , C condensor, S heat exchanger, Sp

liquid fluid pump, K boiler, P pump 

Fig.8b: Irinyi’s steam motor

the rough scheme of the Rankine cycle of

Irinyi’s steam motor, for details cf. appendix 2
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Fig.9a: from Doczekal’s patent DE155744

M motor , B separator, K boiler, P pump

Fig.9b: from Doczekal’s patent DE155744

possible cycles with Doczekal’s machine

the mechanical energy generated by the motor. So a net work cycle of both machines combined

can perform mechanical work without any thermic losses. 

In Doczekal’s motor the condensed liquid was taken out after the adiabatic expansion.Then it was

not necessary to switch on  the condensor in the fluid cycle of his system. If the condensor was

switched off the motor continued to work at reduced power.Therefore the machine seemed to be

equivalent to a perpetuum mobile of second kind. It is not clear today whether it cooled weakly

against environment in effect by non-avoidable parasitic heat losses of the working machine.

The memory of this machine was revived by the journalist Hielscher (25) and recently Schaeffer

(26) rebuilt Irinyi’s machine which uses water-benzene as fluid performing a closed vapour

Fig.10a: the Irinyi-Schaeffer motor :

the double piston construction

Fig.10b:  the Irinyi-Schaeffer motor : 

the demonstration machine
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F(v,T,x1) ' x1F1(
ρ

1) % (1&x1) F2(
ρ

2)) ' x1F1(v/x1) % (1&x1) F2(v/(1&x1)) (4)

cycle.  The machine works in the range between  450°K and 350°C. Under these conditions he

claims to have measured efficiencies of about 60% which is much higher than allowed by the

Carnot’s maximum efficiency criterion [13].  Schaeffer estimates also the efficiency theoretically,

however the derivation contains errors and is too low if compared with his own claimed

measurement. A corrected version of such a calculation can be found in appendix 2. 

In the following we present here the results of an estimative calculation of this mixture which

shows that this mixture may be used in deed in order to build a perpetuum mobile of second kind

at an environment temperature of 450°C. The calculation will elucidate the scarce descriptions

given by Doczekal’s patent and it allows to reconstruct Doczekal’s cycle.

The mixture water-benzene is the limit case of an azeotropic mixture. The gas mixes ideally

meaning that the partial pressures of the single gases simply add up to the total pressure of the

mixture. The polar-apolar liquid mixture demixes quite completely into two liquid phases in the

region of the state space interesting here. 

If the free energy of this  mixture is evaluated into a Taylor expansion only terms of first order

are sufficient to describe the molar free energy F of the system, i.e.

where v:=spec. volume, T:=temperature,  x:=molar ratio,  ρ :=molar density and indices 1stand

for benzene and 2 for water. The additivity of the partial pressures follows from this ansatz

according to  .P'&MF/Mv'p1%p2:'pC6H6
% pH2O

Due to the Legendre transformation all other potentials have the same structure as (4). Using the

ideal properties of the mixture, the phase diagram, cf. fig.11, can be constructed for not too high

temperatures according to the following method [27]: 

Due to the ideality of this mixture the pressure can be calculated as the exact sum of the amounts

of the partial vapour pressure of benzene and water alone at temperatures below 200°C . The

maximum  pressure of a mixture at a certain temperature can be found as the sum of the saturated

pressure of water and benzene at (or very nearby) the azeotropic point for the mixture. Then the

dew lines in the p-x diagram are (almost completely) horizontal and contain the azeotropic points.

Only in the very close neighbourhood of a pure substance (x=0  or  x=1, omitted in fig.11)  the

saturated pressure of the mixture approaches the saturated pressure of each substance.  The

boiling line of the 2-phase area and the gas is determined by the equations 
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total pressure: P'pH2O
%pC6H6

right to the azeotropic point: xC6H6
'

pC6H6 sat

P

left to the azeotropic point: xH2O
'

pH2Osat

P
'1&xC6H6

(5)

Fig.11:  the P-x phase diagram of benzene-water

dotted line shows the line of the azeotropic points; liquid state above horizontal lines, two-phase

area between lines of same color, gaseous state below lines of same color. 

Arrows denote the path of Doczekal’s cycle,  cf. fig.12 and text

where the index  sat denotes the saturated state of the mixed vapour.
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in mass units: Xsat'Msteampsat /(Mair(P&psat))
in molar units: xsat 'XsatMair /(Msteam%Mair Xsat)

(6)

in mass units: Hsat' Cpair

�
T%Xsat (Cpsteam

�
T% r);

in molar units: hsat' Cpair Mair

�
T (1&xsat)%xsatMsteam(Cpsteam

�
T% r) (7)

h'CpairMair

�
T (1&x0)%xg xsatMsteam(Cpsteam

�
T% r) % (1&xg) MsteamCpliquid

�
T (8)

xg' (1&x0)/(1&xsat) (9)

In order to calculate the thermodynamic cycles we use the oldest theory of binary mixtures - i.e.

Mollier’s theory developed for wet air[28].  This theory works exactly under the conditions listed

above (ideal mixing of the gas, complete demixing of the liquid, the gas is regarded to be ideal).

We modify the theory here for the system  water-benzene. The idea is: 

In the phase diagram on the left side of the azeotropic point  water corresponds to the liquid,

benzene to the air, on the right side the roles are interchanged.

In order to write the program the following equations are needed to describe the mixture;

The vapour pressure of the “steam” has to be determined at the relevant temperature T with a an

adequate vapour pressure equation [29]. Then, due to the ideal gas law the ratio Xsat of saturated

“steam” can be calculated either in mass units as mass of “steam” (in kg) /per mass “air” (in kg)

[28] either as molar ratio x of “steam” in the mixed gas (M denotes molecular masses)

This allows to calculate the saturated enthalpy of the “steam-air” mixture

Here 
�

T  is the difference from a arbitrary chosen reference temperature T0 for which is taken 0°

C for water. At this temperature the enthalpy of evaporation r and the specific heat Cp are

determined as well. This allows to calculate the total molar enthalpy h of the liquid-gas mixture

where x0  is the content of water in liquid-gas mixture and xg is the molar content of the gas phase.

The use of xg  becomes necessary if the expansion or compression crosses the dew line at x0=xsat

and the process moves into the 2-phase-area. Then, the initially given molar content of “water”

x0 becomes higher than xsat and it is necessary to determine the molar content xg of gas-liquid

mixture. The molar ratio of “air” in the mixture is . Therefrom follows(1&x0)'xg.(1&xsat)

For the calculation of the cycle the isentrope is necessary which is difficult to determine using
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dh' VdP or hn%1'hn % V(Pn%1&Pn) (10)

the old methods of Mollier theory. We obtain the isentrope by the following method: 

We remember the equation for enthalpy   . If we have an isentrope it holds dS=0.dH' VdP%TdS

Therefore we obtain an equation for the isentrope, namely 

This additional equation allows to determine iteratively  the isentrope if an initial point is given.

The scheme to determine the isentrope is the following, cf. appendix 3

� calculate the first point from the initial values

set T, x, P and calculate psat, xsat, hsat,  h, xg

� for the next point of the isentrope

 � set P

 � solve      hn%1(Tn%1)'hn(Tn) % V(Pn%1&Pn)

     for  Tn+1  by iteration using the equation of state

 � determine the final values psat, xsat, hsat for the point

end of the loop

The results of the calculation are shown in fig.12 to fig.14. If the results are compared with the

patent of Doczekal, cf. fig. 9, a good explanation for these cycles can be found:

We set the system initially to the upper temperature given from the boiler. It contains a saturated

water-benzene vapour mixture of N  particles of the specific volume vg  whose total volume is

V0=vg* N.  Then, the piston is expanded isentropically until the temperature is cooled down

adiabatically to a range between 450 °C and 350 °C. By this procedure only a ratio xg of all N

particles in the piston volume remains gaseous and  a ratio (1-xg) of (only) water condenses. The

benzene remains completely in the superheated state, cf. fig. 11.  Then, the liquid water is

separated from the gas and is recompressed to the initial starting pressure by a pump, whose

energy is neglected here in the following because this amount of energy is negligible compared

with the gas compression. The remaining gas is recompressed adiabatically until it reaches the

initial temperature of 176.85°C. Remarkable for this procedure is that the compression adiabate
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Fig.12a: Doczekal p-v-cycle calculated

the cycle consists of: 1) an isentropic adiabatic expansion (red full line), 2) a separation of the phases,

3) an adiabatic isentropic compression to the switching point (blue full line)  4) an isotherm compression

to the initial pressure (full green line) 5) an evaporation of the condensed fluid(on the full green line),

Note the net gain work arean in the left upper corner of the diagram!

Fig.12b: Doczekal T-v-cycle calculated

the cycle consists of: 1) an isentropic adiabatic expansion (red full line), 2) a separation of the phases,

3) an adiabatic isentropic compression to the switching point (blue full line)  4) an isotherm compression

to the initial pressure (full green line) 5) an evaporation of the condensed fluid (on the full green line)
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lies only very slight above the expansion adiabate. This is different to other mixtures like water-

air where the difference between the compression and the expansion adiabate is greater leading

to higher losses. As shown in fig.12a+b  the temperature of the recompressed mixture rises faster

and, if 450°K are reached, the volume of the compression adiabate is bigger and the pressure P

is lower if compared with the expansion adiabate. In order to close the cycle the volume is

compressed now back to the starting pressure P0 on the isotherm path. Here the gaseous volume

is smaller than at the starting point, namely  V4 = vg* N * xg . If the separation between liquid and

gas is removed the liquid can evaporate again taking heat from the environment of 450°C,  the

piston removes to the initial position and the cycle can start again.

The remarkable point of this crossed cycle is that there exist regions of performance where the

balance of work can be negative after the cycle, meaning that work is given off under quasi-

isothermal conditions. Due to energy conservation then net heat must be taken from the

environment at 450°C. This means: These cycle are very pure second law violating cycles.

The source code of the program contains some  approximations: 

1) The liquid volume which falls out during the expansion is neglected. We convinced us that -

if we assume an overestimated constant liquid volume - the result is not changed significantly.

2) The gaseous phase is assumed to be ideal.

Fig.13: the p-v-Doczekal cycle optimized

calculated exchanged energy gain vs. end

pressure of the cycle . An optimum of gain can

be found around 14 bar if the cycle starts at

about 19 bar

Fig.14: convergence of the used algorithm

the diagram shows that the algorithm to

calculate the net gain converges very slowly
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3) The heat capacity of each component was taken as an extrapolation number in order to be near

to the real enthalpy. 

The last two inaccuracities can be avoided using the data for h from an exact equations of state.

If our results can be confirmed by a more accurate real state calculation and an experiment the

following main questions should be answered in the future: Can this cycle be made more efficient

and is it possible that it can be proceeded at environment temperature ?

We suggest here some first ideas to overcome this problem:

1) To solve the temperature problem it may be possible 

a) either to seek for azeotropic mixtures which work similarly at environment temperatures. 

b) either to implement jet turbine like compressors in order to preheat up adiabatically the heat

delivering gaseous fluid of environment to the working temperature.

2) Because an isotherm is difficult to realize technologically the isotherm of the cycle can be

replaced by a piecewise path approaching the isotherm. This can be done technologically by

leading the fluid through many short adiabatic turbine stages (or pistons) interchanging with heat

exchangers which perform an isobar change of state. 

3) In order to enhance the relative small gain of the Doczekal cycle it should be prolonged to

higher pressures by adiabates. This needs a carburetor in the motor, cf. fig.15 below. 

Fig.15: proposal for a Doczekal p-v-cycle enhanced f or higher gain

red lines: adiabatic expansions, blue lines: adiabatic compressions, green lines: isotherms; this cycle

needs an injection of liquid benzene before the expansion. It was perhaps realized in Doczekals motor
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Appendix 1: Generalization of the conservative property in the sense of group theory

First we give some examples in order to be able to make the abstraction later and to formulate

the appropriate definition useful to be a tool in order to test for gain cycles.

Example 1: energy differences in a force field between points on different paths, cf. Tab.1

From a force field in space we take out 4 points. We assume in the field to be test charges on

which the forces act at these points. We calculate the force differences between the charges at

these different points. According to tab. 2 this “energy” difference between P1 ö P3 is 3. If one

returns directly P3 ö P1 the difference -3 and the sum of both pathes is 0. But, if one returns over

P2, i.e. P3öP2öP1 then the “energy” differences are summed up to -4+2=-2 ! 

This means: the sum of this cycle is for this way

P1öP3öP2öP1 = 1. 

Because the result is different from zero after a cycle  this field is called non-conservative.

In physics, chemistry  and material science there exist many systems to be tested for energy

conservation . For one-dimensional potentials I remember to the electrochemical row of

potentials, to the transition matrix for the spectral states in quantum mechanics, to the Hess heat

theorem in thermodynamics and the table of different thermovoltages of the materials showing

the Seebeck-effect. If the potential differences are represented in a matrix for these effects as 

Table 2: Energy differences between the points in a field

 from point1 point2 point3 point4

_____

 to

point1 0    2    -3   -5 

point2     -2    0    -4   -11

point3 3    4             0   -8

point4 5    11     8         0
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done above, a zero has to be the result after a closed cycle. Otherwise energy conservation may

be violated. The idea can be generalizeded principally as well for the other conserved quantities

like momentum and angular momentum.

example 2: cycles with exchange rates of currencies 

Something analogous can be done with exchange rates of currencies. If there exist a table of

exchange rates on different stock markets one can try to run money on different paths over the

different stock markets. If the exchange rates from table 2 are valid a gain is not possible

(overlook the errors in the last digits) on any path. Because any “arbitrage deals” are impossible

in any cycle we call the matrix “conservative”.

Abstraction of the problem:

From these examples the following question arises:

What are the properties of conservative matrices whose closed cycles are proceeded always

without gain or loss. For cycles using the addition as operation the “energy” difference or the gain

is zero after a cycle, for a cycle using the multiplication as operation the overall factor at the end

is 1 after the cycle is closed. If this is not the case it is possible to run the money

in a closed cycle over the different stock markets and to win money (without any useful work).

Under this conditions the markets are not in equilibrium, the matrix is non-conservative.

Table 2: exchange rates of different stock markets on 12.6.03

place  London Frankfurt  New York     Tokyo

______ (Pfund) (Euro) (Dollar)      (Yen)

currency

Pfund    1    0.70     0.5932202  0.0503597122

Euro  1.428571 1     0.8474576 0.0071942446

Dollar 1.68571378     1.18          1 0.0084892086

Yen  198.571369     139 117.7966 1
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ani'amiBanm

Is it possible to find a test operation to check whether the matrix is conservative ? To answer this

question we regard the elements a1i und a3i from the first and third line of table 2. We multiply

the element a31 with every element of line 1. If all elements of the new calculated row 1 coincide

with line 3, then these rows of the matrix of the exchange of currencies are conservative, i.e. if

a3i = a1i . a31

In this case we say the lines are “multiplicatively” dependent. The analogue can be done with

table 1. Row n is compared with row m. Due to the additivity of work it holds for the worked

performed on a path over three points 

  ani = ami + anm

if the field is conservative.

If  ani is correctly transformed according to this operation then the lines are “additively

dependent”. If the operation can be done with all lines no gain or loss can be obtained in a closed

cycle. Under this conditions the set in matrix is conservative and determined by one line. If the

lines are multiplicatively dependent they can be representented as well additively if one writes.

  log ani = log ami + log anm

Thus conservativeness can be generalized in the following way:

We have a matrix M containing a set of elements aik . Then we can write down generally

the generalized definition of the conservative property of groups as follows:

A matrix is called conservative, if all elements i of a row of a matrix can be transformed into

another row according to the transformation 
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Appendix 2:

In [26] Schaeffer tries to estimate the efficiency of the Rankine cycle with the mixture water-

benzene. The basic idea of the proof is to determine the enthalpies of evaporation for the mixture

benzene water from the vapour pressure curve. To do this he uses the Clausius-Clapeyron

equation for simple substances. This is one mistake in his proof. The correct equation to be used

is the vapour pressure curve for binary mixtures, cf. [28] eq. (330). 

This equation can be rewritten

Due to the insolubility of benzene in water (in the model is always x1 = 0 ) the  Mµ1’/Mx1  term on

the right side the second line of (12) can be taken for zero. This means: the sought values of the

enthalpy of evaporation (the left side of equ. (12) add up according to the lever rule and can be

calculated more simple by using thermodynamic tables. 

Schaeffer’s second error lies in the belief that the isentrope lays on the vapour pressure curve for

saturated steam. According to our calculations the isentrope is not identical with this curve but

lies below the saturated vapour pressure curve at the same temperature. Therefore Schaeffer’s

Rankine cycle has to be determined newly. Probably it is a quasi-Rankine cycle shown in fig.16a)

+b). The cycle works as follows:

point 1 ö2: isobar + isotherm; point 2 ö3: isentrope; point 3 ö4: isobar ; 

point 4 ö5 isobar + isotherm;        point 5 ö1: (for fluid) first isentropic then isobar ;

The states of the different points of the cycle can be calculated from the program to be

point 1: T1=176.85°C,  liquid state, p1=19.0912bar,      x = 0.5088

point 2: T2=176.85°C,  saturated vapour, p2=19.0912bar,      x = xsat = 0.5088

point 3: T3=86.2093 °C,   p3=1.3333 bar, xG=0.9394,        x = xsat =  0.5416

point 4: T4=76.85°C, saturated vapour,  p4=1.3333bar ,       xsa t = 0.68774

point 5: T5=76.85°C, saturated liquid state,  p5=1.3333bar ,       x = 0.5088

point 6: T6.76.85°C, liquid state, p6=19.0912bar,       x = 0.5088
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Fig.16a: the Irinyi-Schaeffer Rankine cycle

qualitative p-v diagram of the cycle

Fig.16b: the Irinyi-Schaeffer Rankine cycle

qualitative T-S diagram of the cycle

Using these values, table 3 and the h_mol_ex values of the program, cf. appendix 3  we calculate

the following enthalpy differences between the points 

point 1 ö2: isobar evaporation: 
�

h12 = 30.664 kJ/mol(data from table 3)

using  
�

h12 = h2-h1 = x.(HC6H6
´´&HC6H6

´) MC6H6
%(1&x).(HH2O

´´&HH2O
´) MH2O

point 2 ö3:    adiabatic expansion: 
�

h23 =-8.6 kJ/mol (data read off from program)

using  
�

h23 = h3-h2 

point 3 ö5 isotherm compression with condensation: 
�

h35 =-34.0803 kJ/mol(from table 3)

with  
�

h35 = h5-h3 =h5-(h1 +
�

h12+
�

h23)  and  h 1/5' x HC6H6
MC6H6

%(1&x) HH2O
MH2O

point 6 ö5 adiabatic compression:  
�

h56  is not necessary to be calculated here

point 6 ö1: isobar heating:  
�

h61 .11.7 kJ/mol (estimative data for Cp from [30])

using   with 
�

h61'Cp

�
T Cp'xC mol

p (C6H6)% (1&x) C mol
p (H2O)

Due to   and  we can identify Q12 = 
�

h12>0, Q35 = 
�

h35<0 and dh'v dp%T dS dp'0

Q61 = 
�

h61>0 as exchanged heats. Therefrom we calculate the efficiency to be

According to the estimative calculation here the Rankine cycle of the mixture yields efficien-cies

near to Carnot´s maximum and comes near to Irinyi´s claimed measurement.
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Table 3:  the thermodynamic properties of the benzene and water [30]:

units:        energies H in kJ/kg volume V in m3/kg entropies S in kJ/(kg.grad)

benzene: Mwt 78.108 g/mol

T(K) p/(bar) V´.103 V´´.103 H’ H´´ S’ S´´

450°K 9.746 1.43 42.47 47.5 367.9 3.0095 3.7215

350°K 0.917 1.209 397.1 -160 239.7 2.4937 3.6357

water: Mwt 18.016 g/mol

T(K) p/(bar)   V´.103 V´´.103 H’   H´´ S’     S´´

450°K 9.32   1.123 210.883 747.7    2773.9 2.105     6.61299

350°K 0.41635  1.0272 3851.3 321.69    2638.4 1.03766   7.6575
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Appendix 3:

water benzene

Molwt 18.015 78.108 molecular weight

Tc/(K) 647.2 562.2 critical temperature

Pc/(Pa) 221.2*10^5  48.9*10^5 critical pressure

CpD/(kJ*kg-1*K -1) 2.2 1.2 specific heat of“steam”

CpL/(kJ*kg-1*K -1) 2.2 1.2 specific heat of“air”

CpW/(kJ*kg-1*K -1) 4.3 2.1 specific heatof“liquid”

r 2501.6 442 evaporation enthalpy
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