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Summary* 

Nuclear fusion reactions of D-D are examined in an 
environment comprised of high density cold fuel embedded in 
metal lattices in which a small fuel portion is activated by hot 
neutrons. Such an environment provides for enhanced 
screening of the Coulomb barrier due to conduction and shell 
electrons of the metal lattice, or by plasma induced by ionizing 
radiation (γ quanta). We show that neutrons are far more 
efficient than energetic charged particles, such as light particles 

                                                      
* This paper was published by American Physical Society (APS) as 
Phys. Rev. C 101, 044609 (20 April 2020), and can be found at: 
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.101.044609. 

(e−, e+) or heavy particles (p, d, α) in transferring kinetic energy 
to fuel nuclei (D) to initiate fusion processes. It is well-known 
that screening increases the probability of tunneling through the 
Coulomb barrier. Electron screening also significantly 
increases the probability of large- versus small-angle Coulomb 
scattering of the reacting nuclei to enable subsequent nuclear 
reactions via tunneling. This probability is incorporated into the 
astrophysical factor S(E). Aspects of screening effects to enable 
calculation of nuclear reaction rates are also evaluated, 
including Coulomb scattering and localized heating of the cold 

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.101.044609
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fuel, primary D-D reactions, and subsequent reactions with both 
the fuel and the lattice nuclei. The effect of screening for 
enhancement of the total nuclear reaction rate is a function of 
multiple parameters including fuel temperature and the relative 
scattering probability between the fuel and lattice metal nuclei. 
Screening also significantly increases the probability of 
interaction between hot fuel and lattice nuclei increasing the 
likelilhood of Oppenheimer-Phillips processes opening a 
potential route to reaction multiplication. We demonstrate that 
the screened Coulomb potential of the target ion is determined 
by the nonlinear Vlasov potential and not by the Debye 
potential. In general, the effect of screening becomes important 
at low kinetic energy of the projectile. We examine the range of 
applicability of both the analytical and asymptotic expressions 
for the well-known electron screening lattice potential energy 
Ue, which is valid only for E >> Ue (E is the energy in the center 
of mass reference frame). We demonstrate that for E ≤ Ue, a 
direct calculation of Gamow factor for screened Coulomb 
potential is required to avoid unreasonably high values of the 
enhancement factor f (E) by the analytical—and more so by the 
asymptotic—formulas. 

1.0 Introduction 
Electron screening is essential for efficient nuclear fusion 

reactions to occur. Screening effects on fusion reaction rates as 
measured in deuterated materials have been demonstrated to be 
important. The nuclear reaction rate includes two primary 
factors: the Coulomb scattering of the projectile nuclei on the 
target nuclei as well as nuclei tunneling through the Coulomb 
barrier. During elastic scattering of charged projectiles on a 
target nucleus, such as a deuteron, some of the energy of the 
projectile particle is transferred to the target nucleus, hence 
heating it. Depending on the projectile particle energy and the 
efficiency of kinetic energy transfer during the scattering event, 
the target deuteron may become energetic enough to enable 
subsequent nuclear fusion reactions via tunneling through the 
Coulomb barrier. Electron screening may play a significant role 
in this process because of hot fuel interacting with lattice nuclei 
in the highly screened environment, as has been demonstrated 
in the companion experimental work reported in Steinetz et al. 
(Ref. 1). In the current work we analyze the electron screening 
effect on Coulomb scattering and the tunneling process 
involving charged projectiles. We then demonstrated the 
superior efficiency of the kinetic energy transfer by energetic 
neutrons on the target deuteron nuclei resulting in subsequent 
nuclear reactions. Such a process is a key ingredient in 
achieving and sustaining nuclear reactions.  

2.0 Nuclear Fusion Cross Section of 
Bare Nucleus Ions  

In the standard case of subbarrier quantum tunneling through 
the Coulomb barrier between positive nucleus ions, the nuclear 
fusion cross section of bare nucleus ions σbare(E) can be written 
(Ref. 2) as 

 ( ) ( ) ( )expbare
S E

E G E
E

 σ = −    (1) 

where E is the energy in the CM (center of mass) reference frame, 
G(E) is the Gamow factor, and S(E) (Refs. 2 and 3) is the 
astrophysical S-factor containing the details of nuclear 
interactions. It is noted that the theoretical development proceeds 
in Gauss units (not SI). In the nonrelativistic case, the relation 
between energy E in the CM frame and the kinetic energy K1∞ of 
the projectile nucleus ion in the laboratory (lab) frame takes the 
simple form 

 
2

1 11
1

2
1

2
m v mK E

m
∞

∞
 

≡ = + 
 



 (2) 

In the lab frame, the target nucleus ion with mass m2 is at rest 
(i.e., 2 0v =

 ), and the projectile nucleus ion with mass m1 has 
velocity 1v ∞

  at infinity.  
In the Wentzel-Kramers-Brilloin (WKB) approximation, 

G(E) involves the evaluation of the following integral (Ref. 2): 

 ( ) { ( ) }
0

1 22 2
ctpr

C
r

G E U r E dr = µ − ∫


 (3) 

Here, UC (r) is the Coulomb potential energy (or the Coulomb 
barrier), UC (r) = Z1e Z2e/r of a projectile nucleus with charge 
Z1e in the Coulomb field Z2e/r of the target nucleus;  
µ = m1m2/(m1 + m2) is the reduced mass of projectile and target 
nuclei; r0 = (R1 + R2) is the classical distance of closest approach 
with nuclei (effective) radii R1 and R2; and rctp is the classical 
turning point, determined from the following expression: 

 ( ) 1 2C ctp ctpE U r r Z e Z e E= → =  (4) 

Evaluation of the integral in Equation (3) gives the standard 
expression for the Gamow factor (Ref. 2), as derived in 
Equation (6): 

( )
1 2

12 cos 1G
C

C C C

E E E EG E
E V V V

−
       = − −    π        

 (5) 
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where VC = Z1e Z2e/r0 is the full height of the Coulomb barrier, 
EG = 2µ c2(π α Z1 Z2)2 is the Gamow energy, and α = e2ћc.  

In the limit of 1CE V <<  (which is usually the case), the 
Gamow factor reduces to the simple Sommerfeld expression 
(Refs. 2 and 3): 

( )
1 2 1 2

,
41 ...G G

C asymptotic
C

E E EG E
E V E

    = − + →     π    
 (6) 

3.0 Nuclear Fusion with Electron 
Screening  

3.1 Coulomb Barrier Screening by Lattice 
Electrons  

In experiments with deuteron beams and deuterated targets, 
when target deuterium nuclei (D) were embedded in insulators 
and semiconductors (Refs. 4 and 5), a relatively small enhance-
ment of nuclear reaction rates was found for the D(d, p)T 
nuclear fusion reaction compared to reactions with gaseous D2 
target experiments (Ref. 6). These enhancements of reaction 
rates for the D(d, p)T nuclear reaction in host insulators and 
semiconductors is naturally explained by the screening of 
interacting nuclei with static electron clouds localized in atomic 
shells of host materials (Ref. 4). Collectively, shell electrons are 
producing a negative screening potential for the projectile 
nucleus, effectively reducing the height and spatial extension of 
the Coulomb barrier between interacting nuclei (Ref. 5).  

However, much larger effects have been readily measured 
with deuterated metal targets (excluding the noble metals such 
as Cu, Ag, and Au) (Refs. 5, 7, and 8). A large enhancement of 
the nuclear reaction rates for the D(d, p)T fusion reaction in host 
metals can be considered as the result of an additional dynamic 
screening by free-moving conduction electrons, which are read-
ily concentrated near the positive ions (Ref. 5). These screening 
effects are collectively referred to as “lattice screening.” 

Electron screening of target nuclei either by atomic shell 
electrons or conduction electrons, are usually both approxim-
ated by a negative uniform shift –Ue of the Coulomb barrier 
UC (r). Here Ue is the electron screening potential energy and is 
given by the simple formula (Ref. 9) 

 1 2
e

sc

Z e Z eU =
λ

 (7) 

where Z1 and Z2 are the atomic number of projectile and target 
nuclei, respectively, and λsc is the corresponding screening 
length. The standard derivation of Equation (7) and the effect 

of electron screening can be straightforwardly estimated by 
recalculating the Gamow factor G(E) in Equation (3) by 
replacing the Coulomb potential energy UC(r) with the general 
expression for the screened Coulomb potential energy UC,sc(r) 
(Ref. 10): 

  ( ) 1 2
, expC sc

sc

Z e Z e rU r
r

 
= − λ 

 (8) 

Since the radial distance r in Equation (3) is smaller or equal 
to the classical turning point rctp, given by Equation (4), which 
in turn is generally much smaller than the characteristic distance 
of electron cloud distribution from reacting nuclei, which is the 
corresponding screening length λsc, that is  

 0 ctp scr r r≤ ≤ << λ   (9) 

one can expand exp(–r/λsc) = (1 – r/λsc) in Equation (8) to find 
that the screened Coulomb potential energy UC,sc(r) (the 
screened Coulomb barrier) can be rewritten (Ref. 9) as 

 
( )

( )

1 2
,

1 2 1 2

1C sc
sc

C e
sc

Z e Z e rU r
r

Z e Z e Z e Z e U r U
r

 
= − λ 

= − = −
λ

 (10) 

with the standard Coulomb barrier UC (r) as 

 ( ) 1 2
C

Z e Z eU r
r

=  (11) 

and the electron screening potential energy Ue, naturally 
determined (Ref. 9) as 

 1 2
e

sc

Z e Z eU =
λ

 (12) 

Therefore, the concept of an electron screening potential 
energy Ue, introduced above in Equations (7) to (11), can be 
theoretically justified if the classical turning point rctp is much 
smaller than the corresponding screening length λsc. This 
necessary condition, stated in Equation (9), can be rewritten as  

 eE U>>  (13) 

using the definition of the classical turning point rctp given by 
Equation (4). 

Obviously for low energy, E ≤ Ue, the concept of an electron 
screening potential energy Ue given by Equations (7) to (11) is 
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not applicable, and the direct numerical evaluation of the 
Gamow factor G (E) in Equation (3) with the screened Coulomb 
potential energy UC,sc(r) from Equation (8) is required. 

It is well known (Refs. 5 and 9) that the lowering of UC(r) by 
Ue is equivalent to the increase of E by Ue, as can be seen in 
Equation (3), namely, [UC (r) – Ue] – E = UC (r) – (E + Ue). The 
uniform shift Ue is called the “electron screening potential 
energy” (Ref. 5).  

Therefore, the experimentally measured tunneling probability 
σexp(E) in the screened target at the ion energy E in the CM  
frame can be evaluated as the experimentally measured tunneling 
probability for bare ions collision at higher energy (E + Ue)  
(Ref. 11): 

 ( ) ( ) ( )exp screen bare eE E E Uσ ≡ σ = σ +  (14) 

The experimental fusion cross-section σexp(E) can be written 
(Refs. 11 and 12) as 

  ( ) ( ) ( )exp bareE E f Eσ = σ  (15) 

which is essentially the definition of the enhancement factor 
f (E). 

From Equation (1) the expression for an enhancement factor 
fUe(E) in the lattice potential approximation is found to be 

  
( ) ( )

( )

( ) ( ) ( )exp

e
e

U

C C e
e

S E U
f E

S E
E G E G E U

E U

+
=

 × − + +

 (16) 

In the case of ( ) ( )eS E U S E+ ≅ , which is usually the 
general case, the enhancement factor fUe(E) can be finally 
written (Ref. 5) as 

  ( ) ( ) ( ) ( )expeU C C e
e

Ef E G E G E U
E U

 = − + +
 (17) 

In the limit of 1CE V  , Equation (17) is further reduced to 
the following asymptotic formula (Refs. 5, 11, and 12): 

 ( ) ( )

1 2

, exp
2e

e G
U asymptotic

e

E U Ef E
E U E E

  =   +    
  (18) 

following from Equation (6).  
 

For low energy (when E ≤ Ue) the concept of an electron 
screening potential energy Ue given by Equations (7) to (11) is 
not applicable, and the direct numerical evaluation is required. 
For the Gamow factor Gdirect(E) in Equation (3) with 
UC(r) → UC,sc(r), 

( ) ( ) ( ){ }
*

1 2

0

, ,
2 2

ctpr

direct C sc C Sc
r

G E G E U r E dr ≡ = µ − ∫


 (19) 

where *
ctpr  is the modified classical turning point determined 

numerically from the following equation: 

 ( )
*

1 2*
, *

exp ctp
C sc ctp

ctp sc

rZ eZ eU r E
r

 
≡ − =  λ 

 (20) 

where the screened Coulomb potential energy UC,sc(r) is obtained 
from Equation (8). 

The enhancement factor in this case is obviously equal to  

 ( ) ( ) ( )expdirect C directf E G E G E = −    (21) 

where GC(E) is determined from Equation (5).  
Table I presents the calculated values of enhancement factors 

for deuterated erbium ErD3 for various levels of energy of 
interest. Note Ue was calculated using Equations (46) or (54) 
noted below and was found to be Ue = 347 eV.  

Note, for example, that the value of 3Ue corresponds to 2 keV 
kinetic energy of the projectile in the lab frame, illustrating that 
the analytical formula for fUe(E) is valid, but the asymptotic 
formula for the enhancement factor is still inappropriate. Since 
the electron screening effect becomes important at low kinetic 
energy of the projectile, direct numerical calculation of the 
Gamow factor is required for accurate results.  

The above equations show a sharp rise in enhancement factor 
f (E) for deuterium interaction with host metals, especially at 
moderately low deuteron energies. The enhancement factor 
f (E) further increases with Z and with decreasing projectile 
energy. This may enable Oppenheimer-Phillips stripping react–
ions resulting in the production of energetic protons and 
neutrons, and a possible route for multiplication. Such 
Oppenheimer-Phillips stripping reactions appear to have been 
observed in the companion experimental work reported in 
Steinetz et al. (Ref. 1). 

Measured Ue for Select Targets: The experimental values for 
an electron screening potential energies Ue are as follows: 
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TABLE I.—ENHANCEMENT FACTOR VALUES FOR ErD3 AT VARIOUS ENERGY LEVELS 
E, 
eV 

fdirect(E) 
(Eq. (21)) 

( )eUf E  
(Eq. (17)) 

( ),eU asymptoticf E  
(Eq. (18)) 

( )
( )

eU

direct

f E
f E

 
( )

( )
,eU asymptotic

direct

f E
f E

 

1
2 eU  1.09×1012 2.36×1013 1.9×1032 21.5 1.7×1020 

Ue 9.89×105 3.09×106 1.96×1011 3 2×105 

2Ue 539 676 8286 1.25 15.4 
3Ue 45.7 46.4 127 1.017 2.8 

 
Ue = 25±15 eV for gaseous targets (Ref. 6), and Ue = 39 to 52 eV 
for deuterated insulators and semiconductors targets (Refs. 4, 5, 
and 7). However, for deuterated metal targets much larger values 
of electron screening potential energies Ue are measured (Refs. 5, 
7, and 8), ranging from Ue = 180±40 eV (Be) to 800±90 eV (Pd). 
The exclusion is observed for deuterated noble metal targets 
(Refs. 5, 7, and 8): namely, Ue = 43±20 eV (Cu), Ue = 23±10 eV 
(Ag), and Ue = 61±20 eV (Au).  

Theoretical values for Ue, considering screening by static 
electron clouds localized in atomic shells of host materials, that 
are calculated in the adiabatic limit utilizing differences inatomic 
binding energies (Ref. 4) correlate well with experimentally 
measured values for Ue in gaseous targets as well as in deuterated 
insulator and semiconductor targets (Refs. 4, 5, 7, and 8). 

In contrast, theoretically calculated values of screening poten-
tial energies Ue by static electron clouds in atomic shells of host 
metals, are almost one order of magnitude smaller (Ref. 4) than 
values of electron screening potential energies Ue experimentally 
measured for deuterated alkaline metal targets (Refs. 5, 7, and 8). 
These discrepancies obviously require different physical mec-
hanisms for theoretical clarification of experimental results. The 
novel physical mechanism, which takes into account the presence 
of quasi-free moving conduction electrons in metals as an 
additional source for screening of interacting nuclei (Ref. 5), will 
be discussed in Section 3.0.  

3.2 Coulomb Barrier Screening by Plasma 
Particles 

In deuterated materials exposed to ionizing radiation (γ-quanta 
or energetic electron e beam) dense plasma channels are created 
inside an irradiated sample comprising non-equilibrium two-
temperature plasma with free-moving hot electrons and free-
moving cold deuteron ions.  

Energetic electrons in plasma cannot create a bound state 
with deuteron ions, because the mean kinetic energy of hot 
electrons ( )e eK kT  is much larger than the Coulomb inter-
action ( ) /ie i eU q q r  between them (Ref. 13): 

 e ieK U>>   (22) 

The inequality in Equation (22) represents the necessary con-
dition for plasma existence and also can be written as 

 2 1 3
ekT e n>>   (23) 

using the obvious fact that the mean distance r  between ions is 
of the order of n–1/3: 

 1 3r n−
   (24) 

Introducing the electron Debye length λDe, which is defined as 

  
1 2

24
e

De
kT

e n
 λ =  π 

 (25) 

Equation (23) is rewritten with the help Equation (24) as 

 
2

2 0.28
4 4

De De
r r rλ >> → λ > ≅

π π
  (26) 

Equation (26) indicates that in plasma the electron Debye length 
λDe is larger in order of magnitude than the mean distance r  
between ions.  

It also follows from Equations (24) and (26) that the number 
of electrons in the electron Debye sphere NDe in plasma is much 
larger than 1 (Ref. 13): 

 34 1
3De DeN n π λ >> 

 
  (27) 

Therefore, the statement 0.28De rλ >  as given by Equation (26) 
and the equivalent statement 1DeN >>  as given by Equation (27) 
follow from the plasma existence necessary requirement of 

e ieK U>> , which is expressed by Equation (22). 
The undisturbed plasma in plasma channels is electroneutral, 

with the total electric charge density Q0 being equal to zero in 
each unit volume: 
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  0 0 0 0i i e eQ q n q n= + =  (28) 

where ni0 is the undisturbed mean ion number density, ne0 is the 
undisturbed mean electron number density, qi is the ion electrical 
charge, and qe is the electron electrical charge. It follows from 
Equation (28) that the electron and ion undisturbed number 
densities ne0 and ni0, respectively, are equal to each other if  
qi = –qe = e: 

  0 0 0 0 00i i e e e iQ q n q n n n n= + = → ≡ =  (29) 

However, the long-range Coulomb forces between ions in the 
plasma act at distances that are much larger than the mean 
distance r  between plasma particles. The interaction between 
any two charged ions at such distances is influenced by the 
presence of a large number of charged particles. Consequently, 
the resulting effective field is collectively produced by many 
charged particle and naturally described by the self-consistent 
Vlasov field, which is not a random one, but macroscopically 
certain; that is, not causing the entropy of the system to increase 
(Refs. 13 and 14). 

In accord with the above description, each ion in the plasma 
can be considered as surrounded by a spherically symmetrical 
(on average) charged ion cloud with non-uniform charge den-
sity distribution Q(r): 

  ( ) ( ) ( )i i e eQ r q n r q n r= +  (30) 

where r is the distance from the ion (located at r = 0). Here ne(r) 
is the electron number density and ni(r) is the ion number 
density, both distributed in the self-consistent Vlasov potential 
field φ(r) around the ion in consideration. 

Since in the Vlasov field φ(r) the potential energy of an 
electron is qe φ(r) and of the ion is qi φ(r), the corresponding 
electron number density ne(r) and ion number density ni(r) are 
both given by the corresponding Boltzmann’s distribution 
(Refs. 13 and 14): 

 

( ) ( )

( ) ( )

0

0

exp

exp

e
e e

e

i
i i

i

q r
n r n

kT

q r
n r n

kT

 φ
= − 

  
 φ

= − 
  

 (31) 

where Te and Ti are the electron and ion temperatures, respec-
tively. Here ne0 and ni0 are the mean electron and ion number 
densities in undisturbed plasma.  

The Vlasov potential φ(r) in the ion cloud around any 
considered ion obeys the nonlinear electrostatic Poisson’s 
equation (the Vlasov equation): 

( ) ( ) ( )( )2 2
2

1 4 4
r

r Q r Q r
r r r

 ∂φ∂
∇ φ = = − π = − π φ 

∂ ∂  



 
(32) 

where the total electric charge density Q(r) is the nonlinear 
function in φ (r), as given by Equation (30) together with 
Equation (31). 

The solution of the Vlasov equation, Equation (32), should be 
used in the evaluation of the Gamow factor in Equation (3) for 
the screened Coulomb barrier UC,sc. For the projectile nucleus 
with charge +e in the Vlasov potential field φ (r) of the target 
nucleus with charge qi = +e, the screened Coulomb barrier UC,sc 
by definition is 

  ( ),C scU e r≡ φ  (33) 

At large distance from the considered ion (located at r = 0), the 
Vlasov field goes to zero φ (r → ∞) → 0, since it describes the 
deviation from reference potential of unperturbed plasma. Thus 

 ( ) ( )0 0 and e e i in r n n n r n n→ ∞ → ≡ → ∞ → ≡  (34) 

As the undisturbed plasma is electroneutral, the total electric 
charge density Q0 being equal to zero in each unit volume: 

( ) 0 0 0 0 00i i e e e iQ r Q q n q n n n n→ ∞ → = + = → ≡ =   (35) 

(see Eqs. (28) and (29)).  
Since at large distance r from the ion (located at r = 0), the 

Vlasov potential φ (r) is small, the ion and electron charge den-
sity distributions can be reduced to linear expressions in terms 
of φ (r): 

 
( ) ( )

( ) ( )

0

0

1  and

1

e
e e

e

i
i i

i

qn r n r
kT

qn r n r
kT

 
= − φ 

 
 

= − φ 
 

 (36) 

leading to a linear expression in φ (r) for the total charge density 
Q(φ (r)): 

 ( )( ) ( )
2 2

0 0
0 0, 0i e ei

i e

q n q nQ r Q r Q
kT kT

 
φ = − + φ = 

 
  (37) 
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Substitution of Equation (37) into Equation (32) gives the 
linearized electrostatic Poisson’s equation (Debye equation) for 
the Vlasov potential φ (r) (Ref. 13): 

 ( ) ( )2
22

1 1

D

r
r r

r r r
 ∂φ∂

= φ  ∂ ∂ λ 
 (38) 

where λD is the Debye screening length in two-component, two-
temperature plasma (Ref. 15): 

  2 2 2
D Di De
− − −λ = λ + λ  (39) 

where λDi and λDe are the ion and electron Debye lengths, 
respectively. They are defined as 

 

1 2

2
0

1 2

2
0

 and
4

4

i
Di

i

e
De

e

kT
n e

kT
n e

 
λ =  π ⋅ ⋅ 

 
λ =  π ⋅ ⋅ 

  (40) 

If the electron temperature Te is much higher than the ion 
temperature Ti (i.e., hot electrons and cold ions), then the Debye 
screening length λD for two-component, two-temperature plasma 
is determined by the ion Debye length λDi: 

 
1 2

24
i

e i D Di
io

kTT T
n e

 
>> → λ = λ =  π 

  (41) 

 

as it follows from Equations (39) and (40).  
Near the ion with charge qi = +e (located at r = 0), the Vlasov 

potential φ(r) reduces to the Coulomb potential qi/r, generated 
by this ion: 

  ( )0 iqr
r

φ → →  (42) 

The exact solution of the Debye equation, Equation (38), for the 
Debye potential φD (r) that satisfies the boundary condition 
expressed by Equation (42), takes the following simple form 
known as the Debye potential: 

  ( ) expi
D

D

q rr
r

 
φ = − λ 

 (43) 

The usual approximation of the Vlasov potential φ (r) that 
obeys the nonlinear equation Equation (32) by the linear Debye  
 

potential φD(r) is expressed by Equation (43) with the correct 
boundary condition from Equation (42), which is extensively 
used in the nonlinear theory of plasma sheath (Refs. 15 and 16). 

This approximation can also be used to obtain the analytical 
expression for the plasma-screened Coulomb barrier UC,sc. The 
Debye potential energy UD(r) of the projectile nucleus with 
charge +e in the Debye potential field φD(r) of the target nucleus 
with charge qi = +e, given by Equation (43), by definition is as 
follows: 

( ) ( ) ( )
2

, expC sc V D D
D

e rU U r e r U e r
r

 
≡ = φ ≈ = φ = − λ   

(44) 

In summary, the correct expression for the screened Coulomb 
barrier UC,sc is determined by the Vlasov potential and not by  
its linearized version, the Debye potential, and the Vlasov 
potential is valid at any temperature. The Vlasov potential can be 
obtained by direct numerical solution of the nonlinear equation, 
Equation (32), with the total electric charge density Q(r) given by 
Equations (30) and (31). Alternatively, as commonly done in an 
evaluation of the nonlinear plasma sheath problem, it is linearized 
to the Debye potential given by Equation (43), with the correct 
boundary condition Equation (42), to merge with the Coulomb 
potential near the bare ion.  

In dense non-equilibrium two-temperature plasma channels 
created in deuterated metal by γ-ionizing radiation, the electron 
temperature Te is much higher than ion temperature Ti, and 
therefore the Debye screening length λD is determined mainly 
by the ion Debye length λDi , as it follows from Equations (39) 
and (40). Therefore, the Debye screening length λD as given by  
Equation (41) converts to 

1 2
10

2
4.15 10 cm

4
i

e i D Di
io

kTT T
n e

− 
>> → λ = λ = = × π 

  (45) 

since in deuterated erbium ErD3 exposed to γ-ionizing radiation 
ni0 = ne0 = 8×1022 cm–3 and Ti = 293 K (room temperature). 
Also, the plasma-particle screening potential energy Ue, which 
is given by Equation (12) for deuterated erbium ErD3, becomes 
equal to 

 
2

347 eVe
D

eU = =
λ

 (46) 

with λD from Equation (45). 
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3.3 Coulomb Barrier Screening by 
Conduction Electrons in Metal Lattice 

In order to theoretically explain the high values of electron 
screening potential exp

eU  experimentally measured for deuter-
ated alkaline metal targets (Refs. 5, 7, and 8), it was suggested in 
(Ref. 5) to take into account the presence of quasi-free moving 
conduction electrons in metals for screening of interacting nuclei. 
Indeed, when atoms are tightly packed, such as in solid host 
metals, wave functions of valence electrons of individual atoms 
are overlapped, acquiring a considerable kinetic energy 

,e degeneracyK  due to quantum degeneracy. The Fermi repulsion is 
large enough to liberate valence electrons from individual atoms 
into a sea of conduction electrons, since they are identical 
particles and are truly indistinguishable.  

This electron degeneracy energy ,e degeneracyK , called the 
Fermi energy εF, can be straightforwardly estimated from the 
Heisenberg uncertainty relation: 

 ep r∆ ∆     (47) 

The root-mean-square of electron momentum 2
e ep p≡ 〈 〉  is 

equal to momentum uncertainty ∆pe, if 0ep〈 〉 = : 

 22 2
e e e e ep p p p p= ∆ = − =  (48) 

and ∆r is of the order of the characteristic distance between 
electrons r , which in turn, is of the order of 1 3

en− : 

 1 3
er r n−∆ ≅  (49) 

where ne is the electron number density. The value of pe is 
obtained from Equations (32), (33), and (34): 

 1 3
e ep n

r
≅



 
 (50) 

Then the Fermi energy εF is estimated to be 

  
2 2

2 3
,

e
e degeneracy F e

e e

pK n
m m

≡ ε ≅


  (51) 

More precise calculation of the Fermi energy εF (for degenerate 
electron gas) is given by the following expression (Ref. 13): 

  
( )2 32 2 2

2 3 2 33
4.78

2F e e
e e

n n
m m

π
ε = =

 

 (52) 

It was considered in (Ref. 5) that differences between the 
Fermi-Dirac and classical (Boltzmann) distributions of the 
conduction electrons may be expected to be negligible for the 
electron screening at room temperature (Refs. 5 and 17). In that 
simplified model (Ref. 5), deuteron ions together with metal  
conduction electrons were treated as a one-component equili-
brium classical plasma, which comprises metallic quasi-free mov-
ing conduction electrons (providing plasma screening), and singly 
charged localized deuteron ions (not contributing to plasma 
screening). The Debye screening length in one-component, equili-
brium (Te = Ti) classical (Boltzmann) plasma that approximates 
the screening by conduction electrons, λDe,c, is then reduced to the 
electron Debye screening length, λDe: 

 
1 2

, 2
04
e

De c De
e

kT
n e

 
λ = λ =  π 

  (53) 

For deuterated erbium ErD3 with material parameters 
ne0 = ni0 = 8×1022 cm–3 and Te = 293 K (room temperature), 
Equation (53) gives λDe,c = 4.15×10–10 cm. Therefore, the 
conduction-electron screening potential energy Ue, which is 
given by Equation (12) for deuterated erbium ErD3, is equal to  

 
2

,
347 eVe

De c

eU = =
λ

  (54) 

with λDe,c from Equation (53). It is obvious that a much better 
estimate of Ue,c can be achieved with Fermi-Dirac statistics for 
the description of conduction electrons rather than with the 
classical (Boltzmann) statistics. It is noted that the screening 
potential values calculated for plasma and conduction electrons 
are identical, although for different reasons. Indeed, plasma for-
mation may also contribute to screening in nonmetal targets; for 
example, in dense deuterium gas irradiated by ionizing radiation. 

3.4 Screening of Reacting Hydrogen Isotope 
Nuclei by Atomic Shell (Bound) Electrons 
in Deuterated Metals 

The screening of ions by atomic shell (bound) electrons is 
modeled by the Thomas-Fermi model. The Wentzel-Thomas-
Fermi screened Coulomb atomic potential (energy) is 

 ( ) ( )1 2
, expC sc

TF

Z e Z e rV r
r

 
= − λ 

 (55) 

where Z1 and Z2 are the atomic numbers of projectile and target 
(host) nuclei, respectively, and, for instance, the modified (to 
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better fit experimental data) Thomas-Fermi screening length 
λTF (atom size) by atomic shell electrons of host material is 
given by the following relation (Ref. 11): 

 
0

1 3
1.4

TF
a

Z
λ =

  
(56) 

where a0 is the Bohr radius, a0 = 5.29×10–9 cm, and Z is the 
atomic number of the host material.  

4.0 General Screening Case For 
Reacting Hydrogen Isotope Nuclei 

In the general case, taking into account possible simultaneous 
screening of reacting hydrogen isotope nuclei by atomic shell 
electrons of the host material and by conduction electrons, or  
by atomic shell electrons of the host material and plasma 
electrons, the total screening potential energy Ue,sc can be 
estimated (Ref. 18) as 

  

2
,e sc

sc

eU =
λ  

(57) 

where the screening length λsc is given by one of the following 
general relations (Ref. 18): 

 
2 2 2 22 2

,   or  sc scTF De c TF D
− − − −− −λ = λ + λ λ = λ + λ   (58) 

where λTF is the modified Thomas-Fermi screening length by 
atomic shell electrons of host material, λDe,c is the screening 
length by conduction electrons, and λD is the Debye screening 
length in plasma.  

Since the inverse-square of screening length 2
TF
−λ , 2

,De c
−λ , or 

2
D
−λ  is proportional to the corresponding electron number 

density, the derivation of Equations (57) and (58) is similar to the 
derivation of Equations (39) and (40), as the summation of 
electron number densities was used in both of them to contribute 
to the total charge density in electrostatic Poisson’s equation for 
screened Coulomb interaction potential.  

5.0 Coulomb Scattering on Target 
Nuclei 

5.1 Light Particles Elastic Coulomb 
Scattering (e–, e+)  

Coulomb scattering of energetic projectile particles on target 
nuclei is the principle process associated with fusion reactions 

of interest. Fusion nuclear events are more likely under the 
condition of large-angle scattering, which brings the reacting ions 
to the classical distance of closest approach to successfully tunnel 
through the Coulomb barrier. However, the elastic scattering at a 
small angle dominates the Coulomb scattering interaction. 
Generally, the electron screening of the Coulomb barrier could 
significantly reduce the small-angle elastic scattering, increasing 
the probability of large-angle scattering and correspondingly 
successful nuclear fusion events. Elastic scattering studies on 
Coulomb scattering of energetic projectiles on target nuclei are 
analyzed and extended to include the electron screening by 
plasma electrons as well as by conduction electrons in deuterated 
metals. It is also found that the kinetic energy transfer (kinetic 
heating) to fuel nuclei is the most successful by energetic neutral 
particles, such as γ-induced photoneutrons. 

The Coulomb scattering of relativistic projectile electrons on 
target atoms (absorbing medium) characterizes by the projectile 
electron-target atom differential cross section dσ/dΩe–a, which 
is determined as the sum of the projectile electron-target 
nucleus differential cross section dσ/dΩe–N and the projectile 
electron-target orbital electron differential cross section 
dσ/dΩe–e multiplied by Z (the atomic number of target atoms). 
It is given by the following relation (Refs. 14, 19, and 20): 

  

( )

( )

2
2

22
min

1 1 cos
2

2 1 cos

e a e N e e

e a

d d dZ
d d d

D

− − −

−

σ σ σ
= +

Ω Ω Ω

 β
− − θ 

 =
 − θ + θ   

(59) 

where θ is the electron scattering angle, β = ve/c (with ve being 
the velocity of the projectile electron and c being the speed of 
light) and θmin is the atomic screening parameter defined as 

  min
TF

ep
λ

θ =


 (60) 

where ћ is the reduced Planck constant and λTF is the modified 
Thomas-Femi target atomic radius given by Equation (56). The 
electron momentum pe is determined by the following relations: 

 

1 2221e e
e

e

E m cp
c E

 
= + 

   
(61) 

where Ee = Ee,tot – mec2 is the kinetic energy of projectile 
electron (Ee,tot is the total energy of projectile electron and me is 
the electron mass).  



 

NASA/TP-20205001617 10 

Equation (59) was derived in the first Born approximation to 
the Dirac equation for the Wentzel-Thomas-Fermi screened 
Coulomb atomic potential (energy) given by Equation (55): 

  ( ) ( )
, expC sc

TF

e Ze rV r
r

 
= − λ 

 (62) 

where λTF is the Thomas-Fermi screening length (atom size) by 
atomic shell electrons of host material given by Equation (56).  

The projectile electron-target atom elastic scattering charac-
teristic distance De–a is determined from the following relation: 

 22 2
e a e ee ND D ZD− −−= +   (63) 

where the projectile electron-target nucleus characteristic 
scattering distance De–N is determined by 

 

( )

22

2 2

2

1 22

2 1
2
2

1 2

e
e N

e e

e e e

ZrZeD
m v

Ze

E m c E

−
− β

= =
γ β

=
β +

  (64) 

with 21 1γ = − β , and the projectile electron-target orbital 
electron characteristic scattering distance De–e is given by 
Equation (63) with Z = 1. 

Here re = e2/mec2 is the classical radius of an electron re = 
2.82 fm = 2.82×10–13 cm. Substitution of De–N from Equation (64) 
and De–e into Equation (63) yields 

 
( ) ( )

( )

2

1 22 2

2 1 2 1

1 2

e
e a

e e e

r Z Z e Z Z
D

E m c E
−

+ +
= =

γβ β +
  (65) 

The total cross section σe–a is obtained by integrating over dΩ 
the differential cross section for projectile electrons scattering 
on target atoms from Equation (59): 

 

2

2
min

2 22 2
min min

2 2
min min

4 4ln 1
4 4

e a
e a

e a

d Dd
d

−
−

−

σ π
σ = Ω =

Ω θ

    + β θ β θ
× − −       + θ θ     

∫
  (66) 

where 1
min ( )e TFp −θ = λ , is given by Equation (60). The ex-

pression for σe–N follows from Equation (66) with the obvious 
substitution 22

e a e ND D− −→ . 
 

For Ee = 2 MeV and mN = md (deuteron mass), the numerical 
value for σe–d is 

242

2 2 2 2
min

4
38.41 kbTFe d

e d
e d

eDd d
d c

−
−

−

π λπσ
σ = Ω ≈ = =

Ω θ β∫


  (67) 

( )22 2 2 6
minsince 45.1 mb,  but 1.17 10 .e TFe dD p − −

−π = θ = λ = ×  

The target nucleus recoil energy can be found from the con-
servation of the total momentum in the elastic projectile 
electron-target nucleus scattering process 

  N e ep p p′= −
    (68) 

where Np  is the target nucleus recoil momentum, ep  is the 
momentum of the incident electron, and ep′  is the momentum 
of the scattered electron. Since in elastic scattering 

e e ep p p′= ≈
 

 (for the reason that small-angle scattering is the 
most probable event), it follows from Equation (68) that 

( )2 2 2 2 22 cos 2 1 cosN e e e e eNp p p p p p p′ ′= = + − θ ≈ − θ
  

 (69) 

where θ is the scattering angle. Correspondingly, it follows 
from Equation (69) with the help of Equation (61) that the target 
nucleus recoil energy EN(θ) is 

  
( ) ( )

( )

2 2

2 2

2

1 cos
2

21 1 cos

eN
N

N N

e e

N e

p pE
m m

E m c
m c E

θ = ≈ − θ

 
= + − θ 

 

 (70) 

where Ee = Ee,tot – mcc2 is the kinetic energy of projectile 
electron (Ee,tot is the total energy of projectile electron, and me 
and mN are the electron and nucleus mass, respectively). 

The mean target nucleus recoil energy NE  in single elastic 
projectile electron-nucleus (target) collision is obtained by 
averaging of EN(θ) over dΩ: 

  
( )N e N

N

e N

E d d d
E

d d d
−

−

θ σ Ω Ω
=

σ Ω Ω

∫
∫

 (71) 

Substitution of dσ/dΩe–N into Equation (71) and taking the 
integral yields the expression for the mean target nucleus recoil 
energy NE  in single elastic projectile electron-nucleus (target) 
collision: 
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( )( ) ( )

( ) ( )

2

2

2 2

2 2

22 1 ln 2 1 1

22 2 2 ln

N
N TF

E
m

=
λ

 + α   + α + αβ − + + α β    α  ×
+ α + αβ − α + α β  α 



  (72) 

where 2
min 2, ev cα = θ β = . For Ee = 2 MeV and mN = md 

(deuteron mass), the numerical value for the mean target nucleus 
recoil energy N dE E=  in single elastic projectile electron-target 
deuteron nucleus collision is 

 24.75 meVdE =   (73) 

5.2 Heavy Particle Elastic Coulomb 
Scattering (p, d, α) 

The Coulomb scattering of the heavy projectile particles on 
target nuclei is characterized by the differential cross section of 
the heavy projectile particles and nuclei, which is given by 
Equation (59) for the obvious substitution 2 2e a p ND D S− −→  
with β = vp/c, and 

 min,
2

TFTF
p

p p pp m E

λλ
θ = =



  (74) 

where 2p p pp m E=  is the projectile momentum and mp and 
Ep are the projectile mass and kinetic energy, respectively. 

The projectile particle-target nucleus characteristic scattering 
distance Dp–N is determined by 

  
2

p N
p N

p

z Z e
D

E− =  (75) 

where zp is the projectile particle atomic number (zp = 1 for the 
proton and deuteron projectile, zp = 2 for the α projectile) and 
ZN is the target nucleus atomic number. 

The total cross section σp–N is obtained from Equation (66) 
with the obvious substitution 2 2e a p ND D− −→  and with 

1pβ → β  , since the heavy projectiles are nonrelativistic: 

  

122 2
min,

2 2
min, min,

24 2 2

2

1
4

2

p N p p N
p N

p p

p p N TF

p

D D

m e z Z
E

−
− −

−

 θπ π
σ = + →  θ θ 

π λ
=



 (76) 

since ( )min,  1p TF ppθ = λ  , 1 301.4TF Na Z −λ = , and 
2p p pp m E= .  

For a proton projectile with Ep = 3 MeV and deuteron target 
nucleus (mN = md), the numerical value for σp–D (total scattering 
cross section) is 

 

2

2
min,

4 2

2

2
5.76 Mb

p D
p D

p D p

p TF

p

Dd d
d

m e
E

−
−

−

πσ
σ = Ω ≈

Ω θ

π λ
= =

∫



  (77) 

For a deuteron projectile with Ed = 3 MeV and deuteron target 
nucleus (mN = md), the numerical value for σd–D is 

  

2

2
min,

24

2
2 11.51 Mb

d D
d D

d D d

d TF

d

Dd d
d

m e
E

−
−

−

πσ
σ = Ω ≈

Ω θ

λπ
= =

∫



 (78) 

whereas for deuteron projectile with Ed = 10 keV and deuteron 
target nucleus (mN = md), the numerical value for σd–D is as 
follows: 

  2 24

2 2
min,

2 3.45 Gb

d D
d D

dd D TF

dd

d d
d
D m e

E

−
−

−

σ
σ = Ω

Ω

π λπ
≈ = =

θ

∫



 (79) 

The relative probability Psc (π /2 ≤ θ ≤ π) to scatter in the back 
hemisphere (π /2 ≤ θ ≤ π) is equal to 

( )
2

12 2 sinsc d D
d D

P d d d
π

−
− π

π ≤θ ≤ π = σ Ω π θ θ
σ ∫  (80) 

For a deuteron projectile with Ed = 3 MeV and deuteron target 
nucleus (mN = md), the numerical value of Psc (π /2 ≤ θ ≤ π) for 
screening by a deuteron shell electron (λsc = λTF = 1.4a0 = 
7.4×10–9 cm) is equal to 

  ( ) 102 1.57 10scP −π ≤θ ≤ π = ×  (81) 

and the value for screening by a metal conduction electron 
(λsc = λDe,c = 5×10–10 cm) is equal to 

  ( ) 82 3.45 10scP −π ≤θ ≤ π = ×  (82) 
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In the case of conduction electron screening in Equation (82), 
the screened Coulomb potential energy VC,sc(r) is defined by the 
same Equation (62) with λTF → λsc = λDe,c = 5×10–10 cm.  

For a deuteron projectile with Ed = 10 keV and deuteron 
target nucleus (mN = md), the probability Psc (π /2 ≤ θ ≤ π ) for 
screening by a deuteron shell electron (λsc = λTF = 1.4a0 = 
7.4×10–9 cm) is equal to 

  ( ) 82 4.73 10scP −π ≤θ ≤ π = ×  (83) 

and for screening by a metal conduction electron (λsc = λDe,c = 
5×10–10 cm) is equal to 

  ( ) 52 1.04 10scP −π ≤θ ≤ π = ×  (84) 

Generally, the deep electron screening of the Coulomb 
barrier with ( ),with De c TFλ << λ  could significantly reduce the 
small-angle elastic scattering dominance, increasing the 
probabilities of large-angle scattering (thus increasing the 
astrophysical factor S(E)) and successful nuclear fusion events.  

For an α projectile with Eα = 3 MeV and deuteron target 
nucleus (mN = md), the numerical value for σα–D (total scattering 
cross section) is 

 

2

2
min,

24

2
8 91.48 Mb

D
D

D

TF

Dd d
d

m e
E

α−
α−

α− α

α

α

πσ
σ = Ω ≈

Ω θ

λπ
= =

∫



  (85) 

whereas for an α projectile with Eα = 1 MeV and deuteron 
target nucleus (mN = md), the numerical value of σα–D increases 
due to the inverse dependence on energy: 

  274.5 MbDα−σ =  (86) 

The target nucleus recoil energy can be found from the 
conservation of the total momentum in the elastic projectile 
particle-target nucleus scattering process: 

  N p pp p p′= −
    (87) 

where Np  is the target nucleus recoil momentum, pp  is the 
momentum of the incident projectile particle, and pp′  is the 
momentum of the scattered projectile particle. Since in elastic 
scattering p p pp p p′= ≈

 

 (for the reason that small-angle  
 
 

scattering is the most probable event), it follows from  
Equation (87) that 

( )2 2 2 2 22 cos 2 1 cosN p p p p pNp p p p p p p′ ′= = + − θ ≈ − θ
  

 
(88) 

where θ is the scattering angle. Correspondingly, the target 
nucleus recoil energy EN(θ) follows from Equation (88): 

( ) ( ) ( )
22 2

1 cos 1 cos
2

p pN
N p

N N N

p mp
E E

m m m
θ = ≈ − θ = − θ  (89) 

where 2 2/p pE p m=  is the kinetic energy of the projectile 
particle. 

The mean target nucleus recoil energy NE  in single elastic 
nonrelativistic projectile-target nucleus collision is obtained by 
averaging of EN(θ) over dΩ, and from Equation (71) with the 
usual substitution 2

min, 2/p pα → α = θ  it follows that 

 
( )

2

2
min,

2

2

21 ln

2ln 2

N p
N pTF

TF
p p

N TF

E
m

m E
m

 
β << =   λ θ 

λ =  λ  







  (90) 

since ( ) ( )min, 2 1p TF p TF p pp m Eθ = λ = λ <<  .  

5.3 Compton Scattering on Free Deuteron  

The differential Klein-Nishina (1929) cross section 
KN
Cd dσ Ω  per unit solid angle dΩ for Compton scattering (of 

an electron) on a deuteron is given by standard expression 

( )
( )

( )

222 2

2 3

1 cos1 cos
2 1 1 cos 1 1 cos

KN
DC D

D D

d r
d

 ε − θσ + θ = + 
Ω     + ε − θ + ε − θ     

  (91) 

where rD is the deuteron classical radius rD = e2/mDc2, 
εD = Eγ/mDc2 and Eγ is the photon energy. 

The total cross section KN
Cσ  is obtained by integrating the 

differential cross section for Compton scattering given by 
Equation (91) over dΩ: 

  
0

2 sin
KN KN
C CKN

C
d d

d d
d d

πσ σ
σ = Ω = π θ θ

Ω Ω∫ ∫  (92) 
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The above integration produces the standard known formula: 

 

( ) ( )

( )
( )

2
2

2

2 1 ln 1 212
1 2

ln 1 2 1 3
2 1 2

D DDKN
DC

D DD

D D

D D

r
  + ε + ε+ εσ = π − 

ε + ε ε   
+ ε + ε + − 

ε + ε    

(93) 

For Eγ = 2 MeV and mN = md, the numerical value for KN
Cσ  is 

as follows: 

  49.43 nbKN
Cσ =  (94) 

For small 2 1D DE m cγε = <<  the expression for KN
Cσ  is 

reduced to 

( )
2

32 4

1

8 26 133 11441 2 ...
3 5 10 35

KN
DC

D
D D D D

r

σ ε <<

π  = − ε + ε − ε + ε − 
 

  (95) 

For Eγ = 2 MeV and mN = md, the numerical value for 
( )1KN

DCσ ε << , calculated with the help of Equation (95), is 
almost as in Equation (93), namely 

  ( )1 49.43 nbKN
DCσ ε << =  (96) 

The deuteron recoil energy ED(θ), which is the kinetic energy 
transferred to free (unbounded) deuteron by γ quanta with 
energy Eγ, is given by the standard known expression: 

  
( ) ( )

( )

2

1 cos
1 1 cosD D

D

D
D

E E

E
m c

γ

γ

− θ
θ = ε

+ ε − θ

ε =

 
(97) 

where θ is the photon scattering angle. When 
( )2 , i.e., 1D DE m cγ << ε <<  then Equation (97) is reduced to 

  
( ) ( ) ( )

2

2

2

1 cos 1 cos

1

D D
D

D
D

E
E E

m c
E

m c

γ
γ

γ

θ ≈ − θ = ε − θ

ε = <<

 (98) 

The mean deuteron recoil energy DE  in a single Compton 
collision is obtained by averaging ED(θ) from Equation (96) 
with dσC /dΩ from Equation (91) over dΩ: 

  

( )

( )
0

1 2 sin

KN
C

D

D KN
C

KN
C

DKN
C

d
E d

dE
d

d
d

d
E d

d

π

σ
θ Ω

Ω=
σ

Ω
Ω

σ
= θ π θ θ

σ Ω

∫

∫

∫

 
(99) 

The above integration produces the standard known expression 

( )
( )( )( ) ( )

( ) ( )( )

( ) ( ) ( )

32 4

3

3

2 9 51 93 51 10

3 3 1 1 2 ln 1 2

6 1 2 2 1 8

3 1 2 2 2 ln 1 2

D D D D D
D

D D D D

D D D D D

D D D D

E Eγ

 ε + ε + ε + ε − ε
 =
 − − ε + ε + ε + ε 

  ε + ε + ε + ε + ε  ÷ 
 − + ε + ε − ε + ε   

  (100) 

When 1Dε << , i.e., 2
DE m cγ << , then Equation (100) is 

reduced to 

( ) 3211 51 39311 1 ...
5 10 350D D D D D DE Eγ

 ε << = ε − ε + ε − ε + 
 

 (101) 

For Eγ = 2 MeV and mN = md, the numerical value for 
( )1D DE ε <<  is 

 ( )1 2.13 keVD DE ε << =  (102) 

In the case of Compton scattering on free electrons, when 
Eγ = 2 MeV, then εe = Eγ /mec2 = 3.914. Then it follows from 
Equation (100) that in this case (rD → re ), 1.062 MeVeE = . 
For Eγ = 1.022 MeV, εe = Eγ /mec2 = 2, and it follows from 
Equation (100) that 0.453 MeVeE = . Therefore, the kinetic 
energy transfer to fuel nuclei (D) by energetic photons is much 
more efficient than by either energetic, light charged particles 
(e–, e+) or by energetic heavy, charged particles (p, d, α).  

Table II provides a comparison of the mean target nucleus 
recoil energy NE  in single elastic nonrelativistic projectile-
target nucleus collision for various projectiles and at different 
projectile energies. In the table, the target is always a deuteron 
nucleus (mN = md), and the calculation provides a numerical 
value for ( )1D pE β << . 

Thus, we conclude that the kinetic energy transfer to fuel 
nuclei D by either energetic light charged particles (e–, e+) or by 
energetic heavy charged particles (p, d, α) is a very inefficient 
process unless there is a means to increase the probability of 
large-angle scattering; for example, via a decreased mean-free 
path by increased ion and electron densities.  
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TABLE II.—MEAN DEUTERON RECOIL 
ENERGIES FOR VARIOUS REACTIONS 

Reaction 
(particle, D) 

Total 
cross 

section,  
σ (barn) 

Mean 
deuteron 

recoil 
energy 

Light particles (e–, e+)  Ee = 2 MeV 38.41 kb 24.75 meV 
Heavy particles  Ep = 3 MeV 5.76 Mb 41.4 meV 
 Ed = 3 MeV 11.51 Mb 42.7 meV 

 Eα = 3 MeV 91.48 Mb 44 meV 

Compton γ  Eγ = 2 MeV  49.43 nb 2.13 keV 

Neutron, n En = 2.45 MeV 3 b 1.09 MeV 

6.0 Neutron Elastic Scattering on 
Deuteron Nuclei  

Since the deuteron nucleus possesses just a single (ground) 
energy level, the neutron scattering on the deuteron is an elastic 
scattering process, if the energy of the neutron is below the 
disintegration of the deuteron by the neutron (the deuteron 
disintegration threshold by neutron 3.4 MeVthnK = ). In this 
case, it is well known (Ref. 21) that the neutron elastic cross 
section σsc(θCM) is isotropic in the center of mass (CM) frame; 
that is, 

  ( )CM 4
sc

sc
σ

σ θ =
π

 (103) 

where θCM is the neutron scattered angle in the CM frame, and 
σsc is the total neutron elastic cross section. The scattering angle 
θlab in the lab frame is related to θCM as 

  CM
lab

CM

sintan
cos

d

n d

m
m m

θ
θ =

+ θ
 (104) 

where mn and md are the neutron and deuteron mass, 
respectively. 

Since the scattered angles θCM and θlab are different, the 
angular distributions of scattered particles in CM and lab frames 
are also different. However, the number of scattered particles in 
the corresponding solid angle dΩ(θCM) in the CM frame and in 
the solid angle dΩ(θlab) in the lab frame must be the same: 

  ( ) ( ) ( ) ( )lab lab CM CMsc scd dσ θ Ω θ = σ θ Ω θ  (105) 

However, dΩ(θCM) = 2π sin (θCM) dθCM and dΩ(θlab) =  
2π sin (θlab) dθlab; therefore, Equation (92) becomes 

( ) ( ) ( ) ( )lab lab lab CM CM CMsin sinsc scd dσ θ θ θ = σ θ θ θ   (106) 

With the help of Equation (104) it follows from Equation (106) 
that the angular distribution of scattered particles in the lab 
frame can be determined from the corresponding angular 
distribution of scattered particles in the CM frame (Ref. 21), as 
follows:  

( ) ( )
( )

( )

3 222
CM

lab CM 2
CM

2 cos

cos
n n dd

sc sc
d nd

m m m m

m m m

 + + θ σ θ = σ θ
 + θ 

  (107) 

The relation between scattered neutron velocities, ,CMnv′  in 
the CM frame and ,n labv′  in the lab frame, is given by the simple 
formula 

 ,lab ,CM CM CM, n
n n n

n d

mv v V V v
m m

′ ′= + =
+



  

 (108) 

where CMV


 is the CM frame velocity, and nv  is the neutron 
velocity in the lab frame. Correspondingly, the relation between 
the neutron and deuteron velocities ,CMnv  and ,CMdv  in the CM 
frame and nv  and dv  in the lab frame are as follows:  

 

,CM CM

,CM CM

0

d
n n n

n d

n
d n

n d

d

mv v V v
m m

mv V v
m m

v

= − =
+

= − = −
+

=



  



 



 (109) 

Since the magnitude of neutron velocity in CM does not change 
after collision (i.e., ,CM ,CMn nv v′ = ), it follows with the help of 
Equations (108) and (109) that 

  ( )
( )

2 2 2
,CM CM CM,CM CM,

22
CM 2

2

2 cos

2 cos

nnn lab

n n dd
n

n d

v v V v V

m m m m
v

m m

′ = + + θ

+ + θ
=

+

 (110) 

Rewriting Equation (110) in terms of the neutron kinetic energy 
nK ′  after and the neutron kinetic energy Kn before yields 

  
( )

( )

22
CM

2

2 cosn n dd
n n

n d

m m m m
K K

m m

+ + θ
′ =

+
 (111) 

It is convenient to introduce the new parameter αn by the 
following definition (Ref. 21): 
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( )
( )

2

2
d n

n
d n

m m

m m

−
α =

+
 (112) 

Then, in terms of the new parameter αn, Equation (111) is 
reduced to 

 ( ) ( ) CM
1 1 1 cos
2n n n nK K′  = + α + − α θ    (113) 

From Equation (113) it is easy to find out that the kinetic energy 
nK ′  is in the following limits ( CM0 ≤ θ ≤ π ): 

 n n n nK K K′α ≤ ≤  (114) 

The probability distribution ( )n n nP K K dK′ ′→  is, by definit-
ion, the probability that the neutron with initial kinetic energy Kn 
will acquire kinetic energy in the energy gap ( ),n n nK K dK′ ′ ′+  
after the collision. The probability that the neutron will be scat-
tered in interval (θCM, θCM + dθCM) is given by 

( ) ( ) ( ) ( )CM CM CM CM CM2 sinsc sc

sc sc

d dσ θ Ω θ σ θ π θ θ
=

σ σ
 (115) 

where σsc(θCM) is the neutron differential elastic cross section 
and σsc is the total neutron elastic cross section in CM. It is clear 
that they are the same probabilities:  

( ) ( ) ( )CM CM
CM

2 sinsc
n n n

sc
P K K dK d

σ θ π θ
′ ′→ = − θ

σ
 (116) 

since CM 0 0nd dK ′θ > → < , thus providing the positivity of the 
probability ( ) 0n nP K K ′→ > .  

From Equation (113) it follows that 

 ( ) CM CM
1 1 sin
2n n ndK K d′ = − − α θ θ   (117) 

Substitution of Equation (117) into Equation (116) yields  
(Ref. 21): 

 

( ) ( )
( )

( )

CM4
1

for

sc
n n

n n sc

n n n n

P K K
K

K K K

πσ θ
′→ =

− α σ

′α ≤ ≤

  
(118) 

Since the neutron elastic cross section σsc(θCM) is isotropic in 
the CM frame, then substitution of σsc(θCM) = σsc/4π from 
Equation (103) into Equation (118) yields 

 

( ) ( )

( )

1
1

for

n n
n n

n n n n

P K K
K

K K K

′→ =
− α

′α ≤ ≤

 (119) 

Therefore, the kinetic energy probability distribution 
( )1n nP K K ′→  is independent of K′ in the whole interval 

( )n n n nK K K′α ≤ ≤  (Ref. 21).  

7.0 Neutron Energy Loss in Elastic 
Collisions With Deuteron Nuclei  

By definition, the average neutron kinetic energy nK ′  after 
elastic collision is obtained by averaging nK ′  with the probability 
distribution ( )n nP K K ′→  given by Equation (119): 

 

( )

( )
( )1 1

2

n

n

n

n

K

n n n n
K

n n nK

n n n
K

K P K K dK

K K

P K K dK

α

α

′ ′ ′→

′ = = + α

′ ′→

∫

∫
 (120) 

The average kinetic energy transferred from neutron to deuteron 
nucleus in elastic collision is equal to n nK K ′−  (see also  
Eq. (112)): 

 
( )

( )2

1 1
2

2 4
9

d n n n n

n d
n n

n d

K K K K

m m K K
m m

′ ′= − = − α

= =
+

  (121) 

which is equal to one half of the maximum energy transfer in a 
head-on collision (Ref. 21): 

  
( )

max 2
4 n d

d, n
n d

m mK K
m m

′ =
+

 (122) 

For a neutron projectile on deuteron target nucleus, with the 
total elastic cross section of the order of 

 ( )3 bn 25 meV 2 MeVsc nKσ ≤ ≤   (123) 

Consequently, the kinetic energy transfer to fuel nuclei (D) by 
energetic neutrons is the most efficient process compared to 
energy transferred by energetic light charged particles (e–, e+), 
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by energetic heavy charged particles (p, d, α), or even by 
energetic photons.  

8.0 Summary of Results 
This study indicates the crucial role of electron screening on 

the overall efficiency of nuclear fusion events between charged 
particles. We show that neutrons are far more efficient than 
energetic charged particles, such as light particles (e–, e+) or 
heavy particles (p, d, α) in transferring kinetic energy to fuel 
nuclei (D) to initiate fusion processes. We provide a theoretical 
framework for d-D nuclear fusion reactions in high-density cold 
fuel nuclei embedded in metal lattices, with a small fraction of 
fuel activated by hot neutrons, which in this study are produced 
by γ-induced photodissociation. We also establish the important 
role of electron screening in increasing the relative probability 
Psc(π/2 ≤ θ ≤ π) to scatter in the back hemisphere (π/2 ≤ θ ≤ π), 
an essential requirement for subsequent tunneling of reacting 
nuclei to occur. This will correspondingly be reflected as an 
increase in the astrophysical factor S(E). We also clarify the 
applicability of the concept of electron screening potential energy 
Ue to the calculation of the nuclear cross section enhancement 
factor f (E). We demonstrate that the screened Coulomb potential 
of the target ion is determined by the nonlinear Vlasov potential 
and not by the Debye potential. In general, the effect of screening 
becomes important at low kinetic energy of the projectile. We 
examine the range of applicability of both the analytical and 
asymptotic expressions for the well-known electron screening 
lattice potential energy Ue, which is valid only for E >> Ue (E is 
the energy in the center of mass reference frame). We 
demonstrate that for E ≤ Ue, a direct calculation of Gamow factor 
for screened Coulomb potential is required to avoid unreasonably 
high values of the enhancement factor f (E) by the analytical—
and more so by the asymptotic—formulas. 
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