Estimation ot the size of the $\mathbf{2 0}$ kW HEG tube (HEG = Hydraulic Energy Generator)

General considerations

The dimensions of a HEG tube with an output of 20 kW are sometimes compared to a CocaCola can. But such cans have a size of $58 \mathrm{~mm} * 146 \mathrm{~mm}$ and a volume of 0.33 litres. They are less high than the HEG tube and have a larger diameter, see:
https://de.wikipedia.org/wiki/Getr\�\�nkedose

Estimates of the HEG dimensions based on the slides in Adolf Schneider's lecture www.borderlands.de/Links/Cola-Device.pdf

Determination of the diameter of the tube

Slide 5

On the left you can see the measuring instrument UNIT-T M830 B. The dimension are according to the produce webpage https://cxem.net/izmer/izmer66.php

Length 125 mm, Width 65 mm, Depth 28 mm
If you compare the diameter of the tube with the the width of the instrument on the photo you get a ration of $23 / 46=0.50$. That means that the diameter of the tube is $0.5 * 65 \mathrm{~mm}=3.25 \mathrm{~mm}$

This is not correct because the tube is a little further back and therefore appears narrower in perspective on the photo.

Slide 8

Here you can see a normal Schuko plug, whose diameter is known to be 36 mm . In comparison, the diameter of the tube is $36 \mathrm{~mm} * 20 / 21=38 \mathrm{~mm}$. However, the tube is a little further back, perhaps by 5%. Thus, the true diameter of the tube is $1.05 * 38 \mathrm{~mm}=\mathbf{4 0} \mathrm{mm}$. This is consistent with the information on slide 3 which is a video clip taken from video: https://disk.yandex.ru/d/9CN509gHhoWgq section 52:50 ff.

Determination of the heigth of the tube

Slide 3

According to the text you can read a height of 200 mm . But this is the total height including the small top. The tube alone has a height of $200 \mathrm{~mm} * 111 / 120=185 \mathrm{~mm}$. This would imply that the height is 4.63 times the diameter.

From the photo on the left with the tube in the hand, one can take a ratio of $127 / 29=4.4$ or a height, relative to 40 mm diameter, of 176 mm .

If we choose a nominal heigt of $\mathbf{1 8 0} \mathbf{~ m m}$ we can calculate an outer volume of $0.18 * 0.02 * 0.02 * 3.14$ $\mathrm{m}^{3}=0.22$ liter. This is 0.7 times the volume of a coca cola can.

But to determine the inner volume, we assume a wall thickness of 5 mm . Then the inner volume is calculated as $0.18^{*} 0.015^{*} 0.015^{*} 3.14=\underline{\mathbf{0 . 1 2 7}}$ liter.

